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Abstract

We present an ATPG algorithm for the covalidation
of hardware-software systems. Specifically, we target
the detection of timing-induced functional errors in the
design by using a design fault model which we propose.
The computational time required by the test generation
process is sufficiently low that the ATPG tool can be
used by a designer to achieve a significant reduction in
validation cost.

1. Intr oduction

A hardware-software system can be defined as one
in which hardware and software must be designed to-
gether, and must interact to properly implement sys-
tem functionality. By using hardware and software to-
gether, it is possible to satisfy varied design constraints
which could not be met using either technology sepa-
rately. The widespread use of these systems in cost-
critical and life-critical applications motivates the need
for a systematic approach to verify functionality. Sev-
eral obstacles to the verification of hardware-software
systems make this a challenging problem, necessitating
a major research effort. One issue is the high complex-
ity of hardware-software systems which derives from
both the size and the heterogeneous nature of the de-
signs. Hardware verification complexity has increased
to the point that it dominates the cost of design. In
order to manage the complexity of the problem, we are
investigating covalidation techniques, in which func-
tionality is verified by simulating (or emulating) a sys-
tem description with a given test input sequence. In
contrast, verification techniques have been explored
which verify functionality by using formal techniques
(i.e. model checking, equivalence checking, automatic
theorem proving) to precisely evaluate properties of the
design. The complexity of formal techniques make co-
validation the only practical solution for many designs.

Previous work in validation has concentrated on unit
testing, the validation of a single task or process. These
testing approaches identify static errors, those errors
which directly impact data values, independent of the

time between the application of test datum. Hardware-
software systems are susceptible to timing errors which
directly impact the time of the application of data
rather than the value of that data. The main differ-
ence between the detection of timing and static errors
is the duration of an erroneous data state. A timing
error may cause a signal to have an incorrect value for
a short time period which cannot be controlled by ma-
nipulating the test sequence. The notion of validating
timing constraints has not been adequately addressed
in either the software or the hardware domains. Mod-
eling timing constraints during validation is central to
the hardware-software covalidation problem. Existing
software testing models must be enhanced to include
timing constraints, and to model timing related defects.

The covalidation process typically requires a time-
consuming manual test generation step. We propose an
automatic test pattern generation (ATPG) tool which
can be used to greatly reduce the time required for co-
validation. The result of the ATPG process is a timed
sequence of events on the system inputs which will de-
tect timing-induced faults described by our design fault
model. The ATPG algorithm uses a Co-design Finite
State Machine (CFSM) model [1] to capture the sys-
tem behavior, and to express the interactions between
system components. The CFSM model has the ad-
vantage that it is supported by the POLIS co-design
framework [2], and it can be constructed directly from
reactive languages including ESTEREL [3].

The paper is organized as follows: Previous work in
hardware-software covalidation is presented in Section
2. Section 3 describes proposed design fault model for
timing-induced errors. Section 4 outlines the stages
of a test pattern generation technique to target the
proposed timing fault model. Results are presented
in Section 5 and the broader impacts of the work are
summarized in Section 6.

2. Previous Work

A survey outlining fault models and test generation
for hardware-software covalidation is presented in [4].
Covalidation fault models have been developed at dif-
ferent levels of abstraction, each model defining a set



of expected design defects. Fault models have been de-
veloped directly at the behavioral level in [5] and [6]
where a fault model assumes that any single variable
assignment in a behavioral description may be incor-
rect. In [7], the authors use the fault model presented
in [6] to build a test generation tool based on the 3-
Satisfiability problem. Mutation analysis has been used
for hardware validation previously in [8] by convert-
ing a VHDL program into a functionally equivalent
Fortran program and then using the Mothra tool for
software mutation analysis [9]. Both domain testing
and dataflow testing methods have been previously ap-
plied to the validation of behavioral VHDL descriptions
[10, 11]. Although previous techniques have analyzed
system performance at the task level [12] without con-
sidering functional errors, we have considered the de-
tection of timing-induced functional errors in [13].

3. Modeling Real-Time DesignErr ors

A design defect is a incorrect feature of a design
which is accidentally included by the designer. De-
sign defects may range from simple syntactical errors
confined to a single line of a design description, to a
fundamental misunderstanding of the design specifica-
tion which may impact a large segment of the descrip-
tion. The number of potential design defects is too
large to be managed either automatically or manually,
so a method is needed to reduce complexity without
sacrificing accuracy. A design fault describes the be-
havior of a set of design defects, allowing a large set of
design defects to be modeled by a small set of design
faults. A design fault model describes the definition of
a set of faults for an arbitrary design. A design fault
model allows the concise representation of the set of all
design defects for an arbitrary design.

Several design fault models have been proposed pre-
viously in the area of software testing, in the context
of dataflow analysis testing. We have modified existing
dataflow analysis techniques to capture timing-induced
functional errors [13]. A timing fault exists when a sig-
nal is assigned to the correct value, but the assignment
event occurs at the incorrect time. A timing fault will
cause a signal value to endure for the incorrect length of
time. The timing fault effect can be observed only dur-
ing the incorrect time period. The difference between
static faults and timing-induced faults is that a timing
fault is active during only a subset of the time period
between two definitions, while a static fault is active
during the entire time period between two definitions.

To describe the detection properties of timing faults,
we will use a small system example in which Process X
sends data to Process Y through a FIFO buffer. To ex-
plain the fault model we must describe some terminol-
ogy. Each signal occurrence in a behavioral description
is classified as either a definition occurrence or a use oc-

currence. A definition occurrence describes a statement
where a value is bound to a signal. A use occurrence
describes a statement which refers to the value of a
signal.

There are several signal timing relationships which
must be maintained to guarantee correct communica-
tion between the two processes. Typical timing con-
straints for FIFO-based communication include the
maximum latency on output signals such as the empty
signal. If the empty signal is asserted later than ex-
pected, then Process Y may attempt to read data from
an empty buffer. Figure 1 depicts the timing details
involved with a late empty signal. Figure 1a shows the
definition of the empty signal in the FIFO description
where empty signal is asserted. Before Process Y can
read data from the FIFO, it must check the empty sig-
nal as shown in Figure 1b. The event trace shown in
Figure 1c shows both the correct and the late asser-
tion times of the empty signal. The highlighted region
which is referred to as the error span is the time during
which the empty signal has the incorrect value. If there
is a use occurrence during the error span, then that use
will receive different data values in the correct and the
faulty circuits, and the fault can be detected.

\ FIFO description I \ Proc. Y description I

Def —> empty <= 1; Use —> if (empty = 0) then
p := ReadFromFIFO();
.
L]

@ (b)

time >
Correct Late

4 4

Def Use| Def

« error span

©

Figure 1: empty signal is asserted late, (a) a section
of the FIFO description, (b) a section of the Pro-
cess Y description, (c) event trace with error span
highlighted.

We define a Mis-Timed Event (MTE) fault to be
associated with each pair of definition and use state-
ment pairs on a given signal s € S, where S is the set
of all signals used in the design. The existence of an
MTE fault indicates that the associated signal defini-



tion occurs at the incorrect time and causes the associ-
ated use to receive incorrect data. Two types of MTE
faults can exist, MT E,qriy where the definition occurs
earlier than the correct time, and MT Ej,se where the
definition occurs later than the correct time.

3.1. Detectionof Timing Faults

The example of Figure 1 demonstrates that a timing
fault associated with a signal is detected only if there
is a use of the signal inside the error span of the fault.
The error span extends from the erroneous time step to
the correct time step. Unfortunately, the precise posi-
tion of the error span is not known since simulation of
the faulty circuit reveals only the erroneous time step.
It is clear, however, that the error span must extend,
either forward or backward in time, from the erroneous
time step. In order to ensure that a use occurrence is
within the error span of a fault, the use occurrence
must be close to the corresponding definition occur-
rence in time. Also, a use occurrence must exist both
earlier than the definition and later than the definition
to detect both late and early MTE faults. The detec-
tion of the MT Ej,¢ fault is accomplished by the use
before the erroneous time step, and the MT E, ., fault
is detected by the use after the erroneous time step.

4. Automatic TestPattern Generation

The goal of automatic test pattern generation is to
identify a timed sequence of input patterns which will
cause the detection conditions of a given timing fault
to be satisfied. Starting from a hardware-software de-
scription, a set of faults is initially generated. An un-
detected fault is then selected, effectively at random.
A test sequence is generated for the selected fault and
fault simulation is performed to identify all other faults
which are also detected by the sequence. This pro-
cess is repeated until either all faults are detected or
have been shown to be undetectable under the given
detection parameters. The fault list generation, test
sequence generation, and fault simulation are described
in the following sections.

4.1. Fault List Generationfor CFSMs

In order to identify an input sequence, a model of
the system computation is needed which can be sys-
tematically evaluated during the test generation pro-
cess. Since we are investigating timing faults, a model
is needed which exposes timing information. We for-
mulate the MTE fault model to be compatible with
the Co-design Finite State Machine (CFSM) [1] com-
putational model which allows the passage of time to
be represented. The CFSM was defined as a compact
and intuitive model for the description of hardware-

software systems. A system is described as a network
of CFSMs, where each CFSM describes a concurrent
process in the system. The CFSMs communicate via
events on signals. Each event is identified by a name, a
value, and a time of occurrence. Each CFSM in a sys-
tem contains a set of states and a transition relation
which can be described as a set of edges in a graph
in which each state is represented by a node. Each
edge is a cause-reaction pair where the cause is a set
of event names and values, and each reaction is a set
of events and values. When an edge is triggered by an
event which matches its cause, the CFSM changes state
to the destination state of the edge, and all events in
the reaction set are emitted. There is a nonzero time
between the cause and the effect which, in practice,
would be determined using some performance estima-
tion technique. The example in Figure 2 shows two
CFSMs which model a Process X which feeds data to
a FIFO. Each edge in the CFSMs is labeled cause ->
reaction, unless the edge does not involve a reaction
in which case only the cause is shown. CFSMs include

*tick—>
E2:*write . )
E4: E5:
-
*in->*datain=1 tick—>
@ <
*tick —> £ ( C
*datain=0 *in—>*datain=0
E6:
E3:
*full=0 *ull=1
*ull=0 *full=1

*in—>*datain=1

(o) (e)

*in—>*datain=0

@

F1:
*write—>
p

: full=1, *empty=0 :

*read—>
*full=0, *empty=1
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Figure 2: Co-design Finite State Machine Example,
(a) Process X CFSM, (b) FIFO CFSM

two types of signals, trigger signals and value signals.
Trigger signals (denoted with a * prefix) implement the
basic synchronization mechanism of a CFSM. Trigger
events can be used to cause a transition in a CFSM.
This is similar the sensitivity list concept in VHDL
and other hardware description languages. Value sig-
nals may have an arbitrarily large domain and their
values persist until the signal value is reassigned. Value



signals cannot cause a transition, but can be used to
choose among different possibilities. Each edge in a
CFSM must be caused by at least one trigger signal.

In order to apply the proposed fault model to CF-
SMs, we must identify definition and use statements
in a CFSM. Signal definitions exist at each reaction
associated with an edge because the reactions assign
values to signals. Signal uses are the causes of each
edge because the value of a signal causing a transition
must be detected. By this definition, a definition-use
pair maps to a pair of edges in the CFSM network; one
edge includes the definition as one of its reactions, and
the other edge includes the use as one of its causes.

Timing-induced functional errors associated with
value signals are considered. The fault list is deter-
mined by matching all definition-use pairs on each
value signal which is internal to the system. For each
definition-use pair involving the same signal and signal
value, an M T Ejqi. and an MT E,qr1y faults are created
because late and early execution of the definition may
cause the use to receive the incorrect value.

4.2. TestSequenceGeneration

Test pattern generation identifies a sequence of
events on input signals which will cause a given def-
inition and use pair to occur within time §. A test
sequence which detects a timing fault on a signal must
trigger the system to perform a computation in which
the signal is defined and used within a fixed time period
4. Test pattern generation requires the identification
of a computation which satisfies the detection require-
ments of the fault. A computation of a system can be
defined informally as the sequence of events resulting
from a given input sequence. In a CFSM, the event se-
quence produced is determined by the path through the
CFSM which is executed. A computation is referred to
as a timed computation when all of the edges contained
in the computation paths are mapped to time steps.
Once the timed computation is identified, the test se-
quence is determined by the set of events associated
with the input signals.

In order to ensure that a solution is found for each
non-redundant MTE fault, the ATPG algorithm must
be essentially enumerative in the worst case, exploring
all possible timed computations whose duration is less
than some maximum threshold. The requirement for
enumeration causes any ATPG algorithm to have non-
polynomial time complexity, but by using heuristics we
attempt to make the complexity tractable in the aver-
age case. The task of identifying a timed computation
to detect a timing fault can be subdivided into the fol-
lowing steps:

Path Identification - A path which represents
the state transitions of a CFSM is identified in each
CFSM. A path in a CFSM is defined as a sequence

of edges since all event information in a CFSM is as-
sociated with the edges rather than the states. The
set of paths selected must satisfy the detection require-
ments of a fault, and the paths must be compatible.
Two paths are incompatible in a computation if they
cannot both exist in the same computation due to con-
flicting edge triggering requirements. Figure 3 shows an
example of conflicting paths for the CFSMs in Figure
2. Each node in a path of Figure 3 represents an edge
of a CFSM in Figure 2. Figure 3a shows two paths
which are incompatible because the number of edges
in Path 2 which are triggered by the assertion of the
sxwrite signal is larger than the number of assertions of
the xwrite signal which occur in Path 1. Path 2 can-
not be traversed concurrently with Path 1 because it
is not possible to trigger both occurrences of edge F1
with only a single assertion of the xwrite signal. Figure
3b shows two paths which are compatible because the
number of edges in Path 2 which are triggered by the
assertion of the xwrite signal is equal to the number of
assertions of the xwrite signal which occur in Path 1.
Our algorithm for path identification is enumerative.
All sets of paths whose length is less than a fixed limit
are explored successively. Path sets which are not com-
patible as explained earlier are not explored further.

Path 1: Path 1:

1 definition of *write by E2 1 definition of *write by E2

Path 2: Path 3:

2 uses of *write by F1 1 use of *write by F1
(@ (b)

Figure 3: CFSM Paths, (a) Incompatib le Paths, (b)
Compatib le Paths

Trigger Event Matching - Each edge in a CFSM
path must be matched with an event on a trigger sig-
nal which causes the edge to be traversed. This match-
ing is required to ensure that each CFSM traverses the
specified paths. An example of this matching is shown
with the paths in Figure 4. The bottom row contains
the definitions of the xtick signal which are created by
the clock and are placed at fixed intervals according to
the clock frequency. Two paths are shown, Path 1, E1,
E2, E3 and Path 2, F1. Each element of a path is the
cause-reaction pair associated with the corresponding
CFSM edge. The cause is a signal use which detects
an event which triggers edge traversal. The reaction is
the set of definition events which occur after the edge
is triggered. Each edge cause is matched to a defini-
tion event of the same signal. The matching of signal
definitions to transition causes is shown in Figure 4
by shading the matching pair. All causes in Figure 4
are matched to definition events. For a given path set,
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Figure 4: Trigger event matching, a feasible matching between two paths

our trigger event matching algorithm enumerates the
set of all feasible matchings for further exploration. A
matching may be infeasible because a state is sensitive
to an unmatched definition, or because a use cannot be
matched due to ordering constraints. Matchings which
are infeasible for any reason are not explored further.

Timing Resolution - Each event which triggers a
CFSM edge must be mapped to a time step. The test
sequence is the set of events on input signals, so this
step completes the test sequence definition by mapping
all input events to time steps. All signal definitions
and triggers which are matched during trigger event
matching must be mapped to the same time step.

Timing resolution is formulated as a linear program
in which the execution time of each edge is repre-
sented as a variable. Linear equations are used to ex-
press ordering constraints between adjacent path ele-
ments. Trigger event matching has the effect of forcing
matched events to occur at a fixed time separation.
Matching constraints are also expressed as linear equa-
tions. The problem may be expressed as a linear pro-
gram as long as the range of time in which each edge
can be scheduled is continuous. If the time range of an
edge is not continuous (possibly interrupted by a sen-
sitive state) then a single continuous subrange must be
selected for each edge.

4.3. Fault Simulation

The task at this stage is to identify all faults which
are detected by a given test sequence and label these
faults as being detected. A byproduct of the test se-
quence generation process is a complete timed compu-
tation which contains the time of each event. By ex-
amining the timed computation, it is simple to locate
all definition-use pairs for which the fault detection cri-
teria outlined in Section 3.1 are satisfied.

5. Experimental Results

In order to evaluate our ATPG tool we have used it
to develop tests for a system based on the gas station

problem [14]. The gas station problem is a simulation
of an automated self-serve gas station. Our version of
the gas station consists of three tasks: the Customer,
the Server, and the Pump. The Pump can provide
discrete amounts of gasoline, either 5, 10, or 15 gal-
lons. When a car arrives, a sensor associated with the
xcar signal notifies the Station. When the Station de-
tects the car, the Station requests money (via the *pay
signal) according to the amount of fuel required. The
paykey input is used to indicate the amount of gasoline
required. The Customer pays for the fuel (via the pay
signal). After payment, the Pump pumps the appropri-
ate amount of fuel and notifies the station on comple-
tion. The Station then returns the change via the xbill
output and goes to its idle state to await the next car.
The CFSMs for both the Station and the Customer
tasks and shown in Figure 5. Each edge in the CFSMs
is labeled, S1 - S3 in the Station CFSM and C1 - C3
in the Customer CFSM. The xtick signal is the output
of a clock. The CFSM of the Pump task is not shown
here for brevity since it is not relevant for the detection
of the faults we discuss. Figure 6 shows the detailed
S1 C1

“car->*pay *pay, paykey=5||10][15->
paid=5/[10]|15

S2 I
*tick, paid=5]|10[|15 —>
*pump, pump=5|10||15 *change

(a) (b)

S3
*done->
*change, *bill

Cc2

*ill->*done

Figure 5: The Gas Station Problem, (a) Station
CFSM, (b) Customer CFSM

result produced to detect the MT Ej,¢ fault associated
with the definition of paid = 10 in edge C1, and the use
of paid = 10 in edge S2. Two CFSM paths are shown,
one containing 2 edges in the Station CFSM, and the
other containing 1 edge in the Customer CFSM. Each
edge is labeled with the use occurrences which are its
causes, and the definition occurrences which are its
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Figure 6: Test Sequence for MTE faults on paid = 10

| delay | 6 || FC |CT |[PS|MC]|LP]
1 2 || 100.00% | 0.04s | 8 3 3
1 5 || 100.00% | 0.01s | 8 3 3
2 2 || 100.00% | 0.02s | 8 3 3
2 5 || 100.00% | 0.01s | 8 3 3

Table 1: Gas Station ATPG Results, ML=2, CLK=2,
TF=6

reactions. Each edge is also placed at the point in
time where is occurs. In this example a delay of 2 is
used, so each edge reaction is 2 time steps after its
cause. The input events which comprise the test se-
quence are shown along the top row, and are placed
in time. The MT Ej4;. fault is detected when the xcar
and *paykey = 10 inputs events occur some small e
time before time steps 0 and 2 respectively because
this forces the definition of paid = 10 to occur € time
before the use.

We used our ATPG tool to detect each of the MTE
faults. Each ATPG run varied on at least one of four
parameters: ML - maximum path length, CLK - the
period of the clock, § - the error span limit, and delay
- the delay associated with each CFSM edge. For sim-
plicity we assume that each edge has the same delay.
Table 1 shows the ATPG results over a range of para-
metric values. The output statistics considered are TF
- Total faults, FC - Fault coverage, CT - CPU Time
including time required by the linear program solver,
PS - Number of feasible path sets explored, MC - Num-
ber of feasible trigger event matchings considered, LP -
Number of distinct linear programs which are solved.

6. Conclusions

We present an automatic test pattern generation
technique for the covalidation of hardware-software
systems. The expense of covalidation and the
widespread use of hardware-software systems moti-
vates the significance of research in this area. The
tractability inherent in simulation-based techniques
give covalidation the potential to enjoy acceptance

in industry which has not been gained by other
verification approaches. By targeting timing faults in
this proposal we are investigating an essential class of
faults which has not been fully understood in previous
work on covalidation.
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