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Abstract
The increasinguseof hardware-softwaresystemsin cost-

critical and life-critical applications has led to heightened
significanceof designcorrectness of thesesystems. This
paperpresents a summary of researchin hardware-software
covalidation which involves the verification of design
correctnessusing simulation-basedtechniques. This paper
focuseson the testgeneration processfor hardware-software
systemsaswell asthefaultmodelsandfaultcoverageanalysis
techniqueswhichsupport testgeneration.
1 Intr oduction

The widespread use of hardware-software systems in
cost-criticaland life-critical applications motivates the need
for a systematicapproach to verify functionality. Several
obstaclesto the verification of hardware-software systems
make this a challenging problem, necessitatinga major
researcheffort. Oneissueis thehighcomplexity of hardware-
software systemswhich derives from both the size and the
heterogeneous nature of the designs. Hardware verification
complexity hasincreasedto thepoint thatit dominatesthecost
of design.In order to manage thecomplexity of theproblem,
many researchersareinvestigatingcovalidation techniques,in
which functionality is verified by simulating(or emulating)
a systemdescription with a given test input sequence. In
contrast, formal verification techniques have beenexplored
which verify functionality by using formal techniques (i.e.
model checking, equivalence checking, automatictheorem
proving) to preciselyevaluatepropertiesof the design. The
tractabilityof covalidationmakesit theonly practicalsolution
for many realdesigns.

In this survey we summarize researchin the stagesof
covalidation involvedwith testgeneration. We describe fault
models usedto describedesigndefectsin Section2, aswell as
the automatic testgeneration techniqueswhich arebasedon
thosefaultmodelsin Section3.
2 Fault Modelsand CoverageEvaluation

A designdefectis a incorrect feature of a designwhich is
accidentally included by the designer. Designdefects may
rangefrom simplesyntacticalerrors confined to a singleline
of a designdescription, to a fundamentalmisunderstanding
of thedesignspecificationwhich mayimpacta largesegment

of thedescription. Thenumberof potentialdesigndefects is
too large to be managed eitherautomatically or manually, so
a methodis neededto reduce complexity without sacrificing
accuracy. A designfault describesthe behavior of a set of
designdefects,allowing a large set of designdefects to be
modeled by a small set of design faults. A covalidation
fault model describesthe definition of a set of faults for
an arbitrary design. A covalidation fault model allows the
concise representation of the setof all designdefectsfor an
arbitrary design. Covalidation fault modelscanbe evaluated
by their accuracy in termsof modeling designdefects, and
theirefficiencyin termsof thenumberof faultsin a design.

The majority of hardware-software codesign systemsare
basedon a top-down designmethodology which beginswith
a behavioral systemdescription. As a result,the majority of
covalidation fault models are behavioral-level fault models.
Existing covalidation fault models can be classifiedby the
style of behavioral description upon which the models are
based. Systembehaviors are originally specifiedin textual
languages,suchasVHDL andESTEREL,andareconverted
into an internal behavioral format for use in codesignand
cosimulation. Many different internalbehavioral formatsare
possible[1].

As a tool to describe covalidation fault models we will
use the simple systemexample shown in Figure 1. Figure
1a shows a simple behavior, and Figure 1b shows the
corresponding control-dataflow graph (CDFG). The example
in Figure1 is limited becauseit is composedof only a single
processandit containsnosignalswhichareusedto model real
time in mosthardwaredescription languages.In spiteof these
limitations, the example is sufficient to describethe relevant
featuresof mostcovalidationfaultmodels.
2.1Textual Fault Models

A textual faultmodelis onewhich is applieddirectly to the
original textual behavioral description. The simplesttextual
fault model is the statementcoverage metric introduced in
software testing [3] which associatesa potential fault with
eachline of code, and requires that eachstatementin the
description be executedduring testing. This model is very
efficient sincethe number of potential faults is equalto the
numberof linesof code.Ontheotherhand,it is well accepted

1



c = c + in1;

return(a+c);

a = in1, in2;
b = 0; c = 0;

return(a+b);

(a) (b)

int foo (int in1, int in2)
int a, b, c;

while (c < a)

if (c < in2)

else

c = c + in1;

return (a + b);

return (a + c);

b = 0; c = 0;
a = in1 + in2;
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3.
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Figure1: BehavioralDescriptions,(a)TextualDescription,(b)
Control-Dataflow Graph(CDFG)

that the limited accuracy of statementcoveragerequires that
it be usedin conjunction with otherfault modelsin orderto
properly validateadesign.

Mutation analysis is a textual fault model which was
originally developedin the field of software test [4, 5], but
hasalsobeenappliedto hardwarevalidation [6]. In mutation
analysisterminology, a mutant is a version of a behavioral
descriptionwhichdiffersfromtheoriginal byasinglepotential
designerror. A mutation operator is a function which is
appliedto the original program to generatea mutant. A set
of mutation operatorsdescribesall expecteddesignerrors,and
thereforedefinesthefunctionaldefect model. Sincebehavioral
hardware descriptions sharemany featuresin common with
procedural softwareprograms,previous researchers [6] have
useda subsetof the softwaremutation operationspresented
in [4]. A typical mutationoperation is ArithmeticOperator
Replacement(AOR), which replaceseacharithmeticoperator
with another operator. For example in Figure1a,the line a �
in1

�
in2; wouldbereplacedwith a � in1 � in2;, a � in1 � in2;,

anda � in1� in2;. Theefficiency of thismetricis goodbecause
the number of mutantsin a descriptionis O � s � m� , wheres
is the sizeof the behavioral description andm is the number
of mutationoperations used,which is a low constant (22 in
the caseof [4]). The accuracy of this approachhasnot been
demonstrated.Thelocalnatureof themutationoperationsmay
limit its ability to describea largesetof designdefects.
2.2Control-Dataflow Fault Models

A number of covalidation fault models are basedon the
traversal of paths through the CDFG representingto the
systembehavior. The earliestcontrol-dataflow fault models
includebranchcoverageandpathcoverage[3] modelsusedin
softwaretesting.

Thebranch coveragemetricassociatespotential faultswith
each direction of each conditional in the CDFG. Branch
coverage requires that the set of all CDFG paths covered
during covalidation include both directions of all binary-
valuedconditionals. Branchcoverageis commonly usedin
for hardware validation and software testing, but it is also

acceptedto beinsufficient to guaranteecorrectnessalone.The
efficiency of thebranchcoveragemetricis highbecauseit can
becomputedby analyzing a singlecosimulation output trace.
The branch coveragemetric has been used for behavioral
validation by several researchersfor coverageevaluation and
test generation [7, 8, 9]. The accuracy of branchcoverage
has been studied to determineits ability to cover design
defects [7, 8]. In [7] researchers found thatbranch coverage,
together with toggle coverage, was sufficient to ensurethe
detection of 25of 26totaldesigndefectsin a5-stagepipelined
microprocessorexample.

Thepathcoveragemetric is a moredemanding metricthan
the branch coveragemetric because path coverage reflects
the number of control-flow paths taken. The assumption
is that a defect is associatedsomepath through the control
flow graphand therefore all control pathsmust be executed
guaranteefault detection. The number of control pathscan
be infinite whenthe CDFG containsa loop as in Figure1b,
so the path coveragemetric may be usedwith a limit on
path length [10]. Since the total number of control-flow
paths grows exponentially with the number of conditional
statements,several researchers have attempted to select a
subsetof all control-flow pathswhicharesufficient for testing.
One path selectioncriterion is presentedin [11] (basedon
work in software test [12]) identifies basis set of paths, a
subsetof pathswhich are linearly independentand can be
composedto form any other path. Previous work in software
test [13, 14, 15, 16, 17] have investigated dataflow testing
criteria for pathselection. In dataflow testing,eachvariable
occurrenceis classifiedaseithera definition occurrenceor a
useoccurrence.Pathsareselectedwhich connecta definition
occurrenceto a use occurrenceof the samevariable. For
example in Figure1b, node1 contains a definition of signal
a and nodes 2, 5, and 6 contain usesof signal a. In this
example, paths1, 2, 4, 5 and1, 2, 4, 6 mustbe executedin
order to cover bothof thesedefinition-usepairs.Thedataflow
testingcriteriahave alsobeenappliedto behavioral hardware
descriptions[18].

The majority of control-dataflow fault models consider
thecontrol-flow pathstraversedwithout over-constrainingthe
valuesof variables andsignals.For examplein Figure1b, in
order to traversepath1, 2, 3, thevalueof c mustbeminimally
constrainedto be less than a, but no additional constraints
are required. This can be contrastedwith variable/signal-
oriented fault models which placemorestringent constraints
onsignalvaluesto ensurefaultdetection. Thedomainanalysis
technique in software test [19, 3] considersnot only the
control-flow path traversed,but also the variable and signal
valuesduring execution. A domain is a subsetof the input
spaceof aprogramin whicheveryelementcausestheprogram
to follow a common control path. A domain fault causes
programexecution to switchto anincorrect domain. Domain
faultsmaybestimulatedby testpoints anywherein the input
space,but they aremostlikely tobestimulatedby inputswhich
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causethe programto be in a statewhich is “near” a domain
boundary. An example of this property canbeseenin Figure
1b in thetraversalof path1, 2, 3. Theonly constraintrequired
is thatc � a, but if thedifferencebetweenc anda is small,then
thereisagreaterlikelihoodthatasmallchangein thevalueof c
will causetheincorrectpathto betraversed. Researchers have
appliedthis idea to develop a domain coveragefault model
which canbe appliedto hardwareandsoftwaredescriptions
[20].

Many control-dataflow fault
models considerthe requirementsfor fault activationwithout
explicitly considering fault effect observability. Researchers
have developedobservability-basedbehavioral fault models
[21, 22, 23, 24] to alleviate this weakness. The OCCOM
fault model hasbeenappliedfor hardware validation[21, 22]
and for software validation [23]. The OCCOM approach
insertsfaults called tags at eachvariable assignmentwhich
represent a positive or negative offset from the correct signal
value. The sign of the error is known but the magnitude
is not. Observability analysisalong a control-flow path is
doneprobabilisticallyby usingthealgebraic propertiesof the
operations along the path and simulation data. A tag will
propagatethroughabehavioral operation if two conditionsare
met: 1) it is of appropriatesign and, 2) the other inputs to
the operation arenon-controlling. As an example, in Figure
1 we will assumethat a positive tag is insertedon the value
of variablec andwe mustdetermine if the tag is propagated
through the conditionc � in2 in node 4 of Figure 1b. The
propagationof the tag depends on the magnitudesof c and
in2. Sincethetagis positive, it is possiblethattheconditional
statementwill executeincorrectly in thepresenceof thetag,so
theOCCOMapproachoptimisticallyassumestagpropagation
in this case. Notice that a negative tag could not affect the
execution of theconditional statement.

While the approachpresentedin [21, 22, 23] determines
observability in a probabilistic fashion, otherresearchers have
developed a a precisetechnique [24]. Work in [24] injects
stuck-atfaultson internal variablesanddeterminesfaulteffect
propagationbehaviorally. Becausethe observability analysis
is precise,thecomputationalcomplexity is increased.
2.3StateMachine Fault Models

Finite statemachinesarethe classicmethodof describing
thebehavior of asequential systemandfaultmodelshavebeen
definedto beapplied to statemachines. Thecommonly used
fault models[25, 26, 27] arethestatecoverage model which
requires that all statesbe reached, and transition coverage
which requires that all transitionsbe traversed. Thesefault
models have also beenrefined to differentiatefaults in the
output function from faults in the next statefunction [28].
Statemachinetransitiontours, pathscovering eachtransition
of the machine, are applied to microprocessorvalidation
[29]. A user-refined transition coveragemodel has been
proposed[30] whichselectsonly transitionswhichaffectstate
variables which areidentifiedby the userasbeingimportant

for test. The problemsassociatedwith statemachinetesting
areunderstoodfrom classicalswitching theory [31] and are
summarizedin anthoroughsurvey of onstatemachine testing
[32].

Themostsignificant problemwith theuseof statemachine
fault modelsis the complexity resultingfrom the statespace
size of typical systems. Several efforts have beenmadeto
alleviate this problem by identifying a subsetof the state
machine which is critical for validation. TheExtendedFinite
StateMachine(EFSM) [33] andthe ExtractedControl Flow
Machine (ECFM) [26] modelscreatea reducedstatemachine
by partitioning the statebits betweencontrol and databits.
In [34] a reduced statemachine is generatedby projecting
the original state machine onto a set of stateswhich are
identified asbeinginterestingfor validationpurposes.These
statemachine reduction techniqueshave successfullyenabled
validationto beperformedfor severallarge-scaledesigns.
2.4Gate-Level Fault Models

A gate-level fault
model isonewhichwasoriginally developedfor andappliedto
gate-level circuits.Manufacturing testingresearchhasdefined
several gate-level fault modelswhich arenow appliedat the
behavioral level [35, 36]. For example, the stuck-at fault
modelassumesthateachsignalmaybeheldtoaconstantvalue
of 0 or 1 dueto a defect. The stuck-atfault modelhasalso
beenapplied atthebehavioral level for manufacturing test[37]
andfor hardware-softwarecovalidation [38, 39]. Behavioral
designs oftenusevariables which arerepresented with many
bits, andgate-level fault models aretypically appliedto each
bit, individually. For example, if we assumethataninteger as
declaredin Figure1ais 32 bits long, thenapplying thesingle
stuck-at fault modelto a variablewould produce32 stuck-at-
1 faults and 32 stuck-at-0faults. The togglecoveragefault
model, which requires that eachbit signal transitionup and
down, hasbeenapplied for designvalidation and hasbeen
expandedto considerobservability [24].
2.5Application-SpecificFault Models

A fault model which is designedto begenerally applicable
to arbitrary designtypesmay not be as effective as a fault
model which targets the behavioral featuresof a specific
application. To justify thecostof developingandevaluating an
application-specificfaultmodel,themarket for theapplication
must be very large and the fault modes of the application
mustbewell understood.For this reason, application-specific
fault modelsare seenin microprocessortest and validation
[40, 41, 42, 43, 44]. Application-specificfault modelsare
alsousedfor popular, well standardized applications suchas
MPEGcoding [45].

Anotheralternative to a theuseof a traditional fault model
is to allow the designer to define the fault model. This
option relies on the designer’s expertise at expressing the
characteristicsof the fault model in order to be effective.
Several tools have been developed which automatically
evaluateuser-specifiedpropertiesduring simulationto identify
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theexistence of faults.Theseapproachesdiffer in themethod
by which thedesignerspecifiesthefault model. Thesimplest
techniques used in common hardware/software debuggers
allow the userto specifybreakpoints basedon the valuesof
a subsetof statevariables. More sophisticatedtools allow
thedesigner to usetemporal logic primitivesto expressfaulty
conditions [46, 47].
2.6Interface Faults

To manage the high complexity of hardware-software
designandcovalidation, efforts have beenmadeto separate
the behavior of each component from the communication
architecture [48]. Interface covalidation becomes more
significantwith theonsetof core-baseddesignmethodologies
whichutilize pre-designed, pre-verifiedcores.Sinceeachcore
component is pre-verified, the systemcovalidation problem
focuseson theinterface betweenthecomponents.

A case study of the interface-based covalidation of
an image compression system has been presented [49].
Researchersclassifytheinterfacefault which occurredduring
the design process into three groups: 1) COMP2COMP
faultsinvolving communicationbetweenpairsof components,
2) COMP2COMM faults involving the interactionbetween
eachcomponentandthe communicationarchitecture, and3)
COMM faultsinvolving thecoordinatedinteractions between
thecommunicationarchitectureandall components.In [49],
test benches are developedmanually to target eachof these
interfacefault classes.

Additional interface complexity is introduced by the
use of multiple clock domains in large systems. The
interfacesbetweendifferentclockdomainsmustbeessentially
asynchronous,makingthemparticularly vulnerableto timing-
induced faults. Timing-inducedfaults are describedin [50]
asfaultswhich causethedefinitionof a signalvalueto occur
earlieror later thanexpected. An example of the occurrence
of this typeof fault would beanincreaseddelayon theempty
statussignalof a FIFO. If theemptysignalis issuedtoo late,
theFIFO maybereadfrom while it is empty. In [20] a timing
fault model is presented and a technique for fault coverage
evaluation is introduced.
3 Automatic TestGeneration Techniques

Several automatic test generation (ATG) approacheshave
beendeveloped to which vary in the searchspacetechnique
used, the fault model assumed,the searchspacetechnique
used,and the designabstractionlevel used. Our discussion
will partition ATG algorithms as either Fault Directed
techniqueswhich target faults individually, andRandomized
techniques which target no specific fault but increasefault
coverageoverall.
3.1Fault Dir ectedTechniques

State machine testing involves the application test
sequences to traverse pathsthrough the machine. Pathsare
identifiedthrough the statemachine which include the states
andtransitionsof interestfor testing. This goal is sometimes
accomplished by defining transition tours which are paths

containing a subsetof all transitionsin the state machine
[29]. In [30], a testsequenceis generatedfor eachtransition
by assertingthat a given transitiondoesnot exist in a state
machine model, andthenusingthemodel checkingtool SMV
[51] to disprove theassertion.A byproductof disproving the
assertionis a counterexample which is a testsequencewhich
includesthetransition.If afaulteffect canbeobserveddirectly
at themachineoutputs,thencovering eachstateandtransition
during test is sufficient to observe the fault. In general,a
fault effect maycausethemachineto be in an incorrect state
which cannotbeimmediately observedat theoutputs.In this
case,adistinguishingsequencemustbeappliedtodifferentiate
eachstatefrom all otherstatesbasedon output values. The
testingproblemsassociatedwith statemachines,including the
identification of distinguishing, synchronizing, and homing
sequences,arewell understood[32, 31].

Theabstractionmethodusedto representthestatemachine
has been shown to greatly impact the complexity of the
test generation process. Binary DecisionDiagrams (BDDs)
have beenusedto represent the statetransitionrelationand
efficiently perform implicit state enumeration by defining
an image computation which computes the stateswhich are
reachablefrom agivensetof states[52]. Theefficiency of this
method of stateenumerationhasled to its useduring thestate
machine testgenerationprocess[26, 34].

BDDs arealsousedat the behavioral level to describethe
CDFGof abehavioralVHDL description [53, 39, 54]. In these
approaches,thefunctionsimplemented by eachoutput bit are
describedasasetof BDDs. Stuck-at faultsareinsertedateach
variablebit to generatefaulty BDDs aswell. Testpatternsare
identified by satisfyingthemachine which is theXOR of the
good andfaultymachines.

Several researchers have chosen to address the test
generationproblemdirectly at theCDFGlevel by identifying
a set of mathematical constraints on the system inputs
which causea chosenCDFG path to be traversed. Once
the constraints have been identified, the test generation
problem is equivalent the problem of solving the constraints
simultaneouslyto produceatestsequenceatthesysteminputs.
EachCDFG pathcanbe associatedwith a setof constraints
which mustbesatisfiedto traversethepath. For example, in
Figure1bthepathcontaining nodes1,2, 4,and6 is associated
with the requirement that c � a and c 	 in2. Becausethe
operations found in a hardware-software description can be
either boolean or arithmetic, the solution method chosen
must be able to handleboth typesof operations. Handling
both boolean and arithmetic operations posesan efficiency
problem because classical solutions to the two problems
have beenpresented separately. For instance,BDD-based
techniques perform well for boolean operations but the
complexity of modeling word-level operationswith BDDs is
high. In [55, 56] researchers define the HSAT problem as
a hybrid versionof the SAT problem which considerslinear
arithmetic constraintstogetherwith boolean 2-SAT and 3-
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SAT constraints.Researchers in [55] present analgorithmto
solvetheHSAT problemwhichprogressively selectsvariables
andexploresvalueassignmentswhile maintaining consistency
betweenthe boolean and the arithmetic constraints. Other
researchers have solved the problem by using publicly
available logic program solving enginessuchas the CLP(R)
engine [57] usedin [10] andtheGNUProlog engine [58] used
in [11].
3.2RandomizedTechniques

Severaltechniqueshavebeendevelopedwhichdevelop test
sequences using randomized algorithms to improve overall
coveragewithout a strongly directedsearchmechanism. An
example of sucha techniqueis presentedin [59, 9] whichuses
a genetic algorithmto successively improve thepopulation of
test sequences. The cost function (or fitnessfunction) used
to evaluatea testsequence is the total number of elementary
operations(variable read/write) which areexecuted.Thegoal
of this approachis to producea testsequence which executes
each elementaryoperation at least a minimum number of
times. Work presentedin [60] usesa Random MutationHill
Climber(RMHC) algorithmwhich randomly modifies a test

sequence to improve a testability cost function. The cost
function usedcontains two parts,(1) thenumberof statements
executedby thesequence,and(2) thenumberof outputswhich
containa fault effect. In [61] researchersuserandom patterns
whicharebiasedbyuser-definedconstraintswhichaltersignal
likelihoodsbasedonstateconditions.
4 Conclusions

We have presenteda topology of researchefforts in
test generation and fault modeling for hardware-software
covalidation. It is clearthatthefield is maturing asresearchers
have begunto identify andagree on theessentialproblemsto
be solved. Our understandingof covalidation hasdeveloped
to the point that industrial tools areavailablewhich provide
practicalsolutions to testgeneration, particularly at the state
machine level. Although automation tools are available,
they are not fully trusted by designers and as a result, a
significantamount of manual test generation is required for
the vast majority of designprojects. The chief obstacleto
thewidespreadacceptanceof availabletechniquesis the lack
of faith in the correlation betweencovalidation fault models
andrealdesigndefects.Automatictestgenerationtechniques
have been presentedwhich are applicable to large scale
designs,but until theunderlyingfaultmodelsareaccepted, the
techniqueswill not beappliedin practice. Oncethis problem
is addressedaspartof a growing researcheffort in hardware-
software covalidation, we can expect to seelarge increases
in covalidation productivity through the automation of test
generation.
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