
A Validation Fault Model for Timing-Induced Functional Err ors

QiushuangZhangandIan G. Harris
Departmentof ElectricalandComputerEngineering

University of Massachusetts
Amherst,MA 01003

qzhang@ecs.umass.edu,harris@ecs.umass.edu
Phone:413-545-1594,Fax: 413-545-1993

Abstract—
The violation of timing constraints on signalswithin

a complex systemcan create timing-inducedfunctional
errors which alter the value of output signals. These
errors are not detected by traditiona l functional
validation approaches because functional validation
does not consider signal timing. Timing-induced
functional errors are also not detectedby traditiona l
timing analysis approaches becausethe errors may
affect output datavalueswithout affecting output signal
timing. A timing fault model, the Mis-Timed Event
(MTE) fault model, is proposed to model timing-
induced functional errors. The MTE fault model
formulates timing errors in terms of their effects on
the lifespans of the signal values associated with the
fault. We use several examplesto evaluate the MTE
fault model. MTE fault coverage resultsshows that it
efficiently capturesan important classof errors which
arenot targeted by other metrics.

I . INTRODUCTION

The widespread use of complex hardware systemsin
cost-critical and life-critical applications motivates the
need for a systematicapproach to verify functionality.
Hardwareverificationcomplexity hasincreasedto thepoint
thatit dominatesthecostof design. In order to manage the
complexity of theproblem,we areinvestigating validation
techniques,in whichfunctionality is verified by simulating
(or emulating) a system description with a given test
input sequence. In contrast,verification techniqueshave
beenexplored which verify functionality by usingformal
techniques (i.e. model checking, equivalence checking,
automatictheoremproving) topreciselyevaluateproperties
of the design. Formal verification techniques have the
advantagethat they areprecise,wherevalidationcanonly
provide a degree of certainty which is less than 100%.
However, formal techniquessuffer from high complexity,
sotheverificationof largedesignsusingformal techniques
aloneis oftenintractable. Thecomplexity of validation can
be madetractableby usinga testsequenceof reasonable
length, and the degree of certaintyprovided canbecome

arbitrarily close to 100%. We investigate validation
techniqueswhich canbe usedin conjunction with formal
verificationtechniquesto verify largehardware systems.

A practicaldifficulty in thevalidation of largehardware
systemsis choosing the proper designabstraction level
which providesa tradeoff betweensimulationcomplexity
and error modeling accuracy. In practice, validation is
performedatall levelsof abstractionfrom behavioral down
to layout. Behavioral hardware description languages,
suchasVHDL andVerilog, have only beenfully accepted
by industry for less than a decade, and researchin
behavioral validation is still developing. Behavioral
software languages have been widely used for several
decades,so it is to be expectedthat previous work in
softwaretestingmaybeleveragedto addressthevalidation
problem. Several key differencesexist betweensoftware
languages and hardware descriptions languages which
mustbestudiedbefore softwaretestingtechniquescanbe
applied. The hardwaredesignprocessmust considerthe
timing of events inside the systemto guaranteecorrect
design. Hardware description languages support time-
varying signals, and includeconcurrency constructs such
astheprocessstatementin VHDL. Thenotion of validating
internaltiming activity at thebehavioral level hasnotbeen
adequately addressedin eitherthesoftwareor thehardware
domains. Modeling internal timing constraints during
validation is central to the hardware validation problem.
Existing software testing models must be enhanced to
includetiming relationships, andto model timing-induced
errors.

Previous work in validation test has concentrated on
unit testing, the validation of a single task or process.
Thesetestingapproachesidentify staticerrors, thoseerrors
which directly impactdatavalues,independentof thetime
betweenthe application of test datum. The functionality
of a hardware systemdepends on the correctnessof the
communicationbetweenprocesses,aswell thecorrectness
of eachindividual process. Since eachprocessmay be
timed by a different clock, inter-processcommunication
mustbeproperly synchronizedin time. Hardware systems
are therefore susceptibleto internal timing errorswhich

directly impact the time of the applicationof datarather
than the valueof that data. A timing-inducederror may
causea signal to have an incorrect value for a short
time period which cannotbe controlledby manipulating
the test sequence.Timing-inducederrors may therefore
manifestthemselvesastransienterrorswhoseeffectsmust
bedetectedwithin a smallwindow of time. Thedetection
requirementsfor timing-inducederrors arenot satisfiedby
conventional functionalvalidationtechniques.

Additionally, timing-inducederrors may impactoutput
datavalueswithout affectingoutput datatiming, andmay
therefore be ignored by timing analysis. An example of
this typeof errorwould bea systemdescribedin [25] and
shown in Figure1. Thesystemperiodically takesaninput
from an analog/digital converter, performs a computation
on it, andoutputsthe result to a digital/analog converter.
To simplify the example we assumethat Computation X
producesan output equalto the input. If Computation X
completeswithin asinglesampleperiodthentheoutputis a
timeshiftedversionof theinput. However, if adesignerror
causesthecomputationto takelongerthanasampleperiod,
thenthedataoutput ateachtimeperiodwill betheincorrect
sample,andtheoutput signalwill beincorrect. Noticethat
thetimingerrordoesnotnecessarilyeffecttherateatwhich
the total systemproducesoutput data. The digital/analog
convertercanproducea new output at eachsampleperiod,
but theoutput valueswill beincorrect.Wereferto thiserror
as a timing-induced functional error because it is caused
by an internal timing problem, but it manifestsitself asa
functional error whenviewed from outsideof the system.
A timing-induced functional error will not be detected
by task-level timing analysis[6], [5] becausethe overall
systemstill producesdataat the correct rate. To detect
theseerrors a new fault model is requiredwhich considers
therelationship betweentiming andfunctionality.

a/d Comp.
X

d/a

Fig. 1. A systemto processananalog signal

The paperis organizedas follows: Previous work in
hardware validation is presented in SectionII. Section
III describes the design fault model for timing errors.
A fault simulation method is presentedin Section IV.
Resultsarepresentedin SectionV andSectionVI presents
conclusions.

I I . PREVIOUS WORK

A. HardwareValidation

Fault modelshave beendevelopedat differentlevelsof
abstraction,eachmodel defininga setof expecteddefects.
Logic level models[16], [1] assumedefectssuchastheuse
of an incorrect gate,insertionof anextra line, deletionof
a line, anddeletionof a gate. In [16], the defect model
is usedto direct an automatic test generation tool which
is presented. A more broad logic level defectmodel is
presentedin [15] whichconsiders any defectwhichcanbe
repairedby re-synthesizingasinglesignalin thecircuit. In
[12] a fault model is presented at the finite statemachine
level which assumesthateacherroraffectseithera single
statetransitionor asingletransitionoutput.

Fault models have been developed directly at the
behavioral level in [8] and [7] where a fault model
assumesthatany singlevariableassignmentin abehavioral
descriptionmay be incorrect. This is representedby
associatingeachvariable assignmentwith both a positive
and negative tag to representboth assignmentincorrect
possibilities.Thetagsarepropagatedthrough thecontrol-
flow graph using a set of tag propagation rules which
considermasking effects. In [9], the authors use the
fault model presentedin [7] to build a test generation
tool basedon the 3-Satisfiability problem. Mutation
analysishasbeenusedfor hardwarevalidationpreviously
in [13] by convertinga VHDL programinto a functionally
equivalent FortranprogramandthenusingtheMothra tool
for software mutation analysis[17]. Researchershave
applied software path testing to VHDL by allowing the
user to selectcontrol-flow pathsto stimulate,and using
constraintprogrammingto identify teststo stimulatethe
chosenpaths[24]. The tool presented in [11] act as a
simulatoranddatacollector, allowing the userto specify
thenatureof the fault coverageto becomputed. We have
previouslyappliedbothdomaintestinganddataflow testing
methodsto thevalidation of behavioral VHDL descriptions
[28], [27]. Previouswork in timing verificationhasstudied
theimpactof designerrors on timing correctness[3], [19],
[26]. Researchershave developed techniques for static
timing analysisof hardware-softwaresystems.

B. SoftwareValidation

Software researchers have beenstudying the problem
of validating behavioral descriptions andhave developed
several techniques which can be applied in hardware
validation. The earliestsoftware fault coveragemetrics
include statementcoverage,branch coverage, and path
coverage [2]. Statementcoverage assumesthat the
execution of a faultystatementwill guaranteethedetection
of the fault. The branchcoveragemetric complements
statementcoverageby reflectingthe number of branches

which are taken at some point during testing. The
path coverage metric is a more demanding metric than
either the statementor branchcoveragemetricsbecause
path coverage reflects the number of control-flow paths
taken. Sincethe total number of control-flow pathsgrows
exponentiallywith the number of conditional statements,
achieving high path coverage is a highly complex task.
Data flow basedtest adequacy is a structure basedtest
adequacy criteriawhich is concernedwith theoccurrences
of variables in a program. Each variable occurrence
is classified as either a definition occurrence or a use
occurrence. The basiccriteria [22], [10], [4], [20], [18]
identifyasubsetof pathsthroughthedataflow graphwhich
mustbe traversedduring testing. Mutation analysis[17],
[21] is similar to fault simulationusinga setof mutation
operations which describethe expected defects. The
number of mutantscan be high, making this approach
time consuming, but researchhasbeenperformedto limit
the number of mutants [21], and to weaken the mutation
detectionrequirements[14].

I I I . MODELING TIMING DESIGN ERRORS

A designerror is a incorrect feature of a designwhich
is accidentallyincluded by the designer. Design errors
may range from simple syntactical errors confined to
a single line of a designdescription, to a fundamental
misunderstandingof the designspecificationwhich may
impacta large segment of thedescription. Thenumber of
potential designerrors is too large to be managed either
automaticallyor manually, soamethodis neededto reduce
complexity without sacrificingaccuracy. A designfault
describes the behavior of a setof designerrors, allowing
a larger set of designerrors to be modeledby a small
set of designfaults. A designfault modeldescribesthe
definition of a set of faults for an arbitrary design. A
designfault model allows theconciserepresentationof the
set of all designerrors for an arbitrary design. Several
designfault models have beenproposedpreviously in the
areaof softwaretesting,in thecontext of dataflowanalysis
testing.Thesetechniquesidentifycontrol pathswhichmust
be traversedduring testing. Several testadequacy criteria
basedondataflow analysishavebeendeveloped[22], [10],
[20], [18]. Weproposeto modify existingdataflow analysis
techniquesto capture timing errors.We will first describe
the traditional dataflow analysistechniques,and thenwe
will describe thenew formulation for timing errors.

Dataflow analysis for HDL descriptions [27] is
concerned with the occurrencesof variables in a HDL
description. Each variable occurrence in a VHDL
description is classifiedas either a definition occurrence
or a use occurrence. A definition occurrence of a
variable describes a statementwherea value is bound to

the variable. A use occurrence of a variable describes
a statementwhich refers to the value of the variable.
This occurrence information is added to the CDFG
representation asapreprocessingstepto facilitatedataflow
analysis. Figure 2 shows the CDFG of a simple VHDL
description. Note that a node in the graph can have
multipleuseoccurrencesof avariablebut nomorethanone
definitionoccurrenceof thatvariable. After theexecution
of anodecompletes,thenodespointedto by outgoing solid
edgesbegin to execute if the condition on the edges are
satisfied.

elsethen

1

Process Begin

2

3 5

��� �������	�

 �	�

� �	� ���� ���

� �	� ���� ���

elsethen

7

8 10

� �	�

� �������	�� �	�� �	�

� �������	�� � �� �	�

End Process

Fig. 2. Flow graphwith dataflow information.

Basedon the flow graph model introduced above, a
definition clear path with respectto a variable X is a
pathin theflow graph without definition occurrenceof X.
A definition-use (du) pair of a variable X consistsof a
definitionandauseof variableX whichareconnectedby a
definitionclearpathwith respectto X, from thedefinition
to the use. If a du pair is exercisedin the definition-use
sequenceby sometestpatterns,thenthedupair is covered
by thetestpatterns.All definition-use(du)pairsmetric[22]
requires thatall dupairsbecoveredby thetestpatterns,i.e.
every definition to every useof that definition shouldbe
exercised. In Figure2, therearefour dupairsof variableP,
(3 ��� 8), (3 ��� 10), (5 ��� 8) and(5 ��� 10), andthese
dupairsarerequired to beexecutedby all dupairsmetric.

A. Timing Fault Model

Design faults can be grouped into two classes,static
faultswhoseobservation is independentof absolute event

timing, andtiming faultswhoseobservation dependson a
specifictiming of events on inputsignals.Theobservation
of a static fault dependson the sequenceof test pattern
application, but not theabsolutetime of theapplication of
eachpattern. An exampleof astaticfaultis thereplacement
of theexpressionx ��� y � 1 with theincorrectexpression
x ��� y � 2. Oncethis fault is activated,its effectscanbe
observed at any time before the signalx is redefined. A
timing fault existswhena signalis assignedto thecorrect
value,but theeventoccurs at the incorrect time. A timing
fault will causea signalvalueto endure for the incorrect
length of time. The timing fault effect can be observed
only during the incorrect time period. The difference
betweenstaticfaultsandtiming faultsis thata timing fault
is active during only a subsetof the time period between
two definitions, while a static fault is active during the
entiretimeperiodbetweentwo definitions.

To describe thedetectionpropertiesof timing faults,we
will use the small example shown in Figure 3 in which
ProcessX is sending datato ProcessY through a FIFO
buffer. The FIFO has3 inputs, (1) datain, which takes
input data,(2) write, which is assertedwhennew datais
to be written to the FIFO, and(3) readwhich is asserted
when data is to be read from the FIFO. The FIFO also
has3 outputs, (1) dataout which is driven with output data
whena readis performed,(2) emptywhich indicatesthat
thebuffer containsnodata,and(3) full whichindicatesthat
no new datacanbewritten to thebuffer. In the following
exampleswe assumea discreteevent timing model which
is commonly usedwith hardware and hardware-software
description languages. Although we assumethe discrete
event model for explanation purposes,the fault model is
not limited in this way andwe will investigatethe useof
differenttiming assumptions aspartof this research.

FIFOProc. X Proc. Y

datain

write

full empty

read

dataout outin

Fig. 3. Two processescommunicating via a FIFO

There are several signal timing relationships which
must be maintainedto guarantee correctcommunication
betweenthe two processes.Typical timing constraints for
FIFO-basedcommunicationinclude themaximumlatency
on output signalssuchas the emptysignal. If the empty
signalis assertedlater thanexpected,thenProcessY may
attemptto readdatafrom anemptybuffer. Figure4 depicts
thetiming detailsinvolved with a lateemptysignal.Figure
4a shows the definition of the emptysignal in the FIFO
description whereemptysignalis asserted.BeforeProcess
Y canreaddatafrom the FIFO, it must checkthe empty
signalas shown in Figure 4b. The event traceshown in

Figure 4c shows both the correct and the late assertion
times of the emptysignal. The highlighted region which
is referred to as the error span is the time during which
the emptysignalhasthe incorrect value. If thereis a use
occurrenceduringtheerrorspan,thenthatusewill receive
different datavaluesin the correctandthe faulty circuits,
andthefaultwill bedetected.

In addition to events occurring later than expected,
eventsoccurring earlierthanexpectedcancreateincorrect
resultsaswell. For example,whenProcessX writesdatato
theFIFO thewrite signalmustbeassertedafterthedatain
lines receive the datato be written. If the write signal is
issuedearly thenit mayoccurbeforedatais ready on the
datainlines.Thefault is associatedwith thedupairshown
in Figures5a and5b. The datain lines aredefinedin the
codeshown in Figure5a,andthedatain linesareinserted
into thebuffer in thecodeshown in Figure5b. Theevent
tracein Figure5cdepictstheerrorspanassociatedwith the
fault.

We can now definea fault model which describes the
set of timing faults potentially containedin a hardware-
software description. In order to do so, we must make
clear the distinctionbetweena definition (use)statement
and a definition (use)occurrencein our terminology. A
statementrefersto a statementin the original procedural
specificationof the hardware-software system,while an
occurrencerefersto the execution of a statementduring
simulation. A singlestatementmayexecuted many times
during simulation, and may therefore be associatedwith
many occurrences.

Definition - A definition occurrenceis a tupledo ��� ds � t
anda useoccurrenceis a tupleuo �!� us � t :" ds # Ds, where Ds is the set of all statementsin the
hardware-software description which assign a value to
signals." us # Us, whereUs is the set of all statementsin the
hardware-software description which use the value of
signals." t is a non-negative integer representing the time of the
occurrence.

We define a Mis-Timed Event (MTE) fault to be
associatedwith eachpair of definition andusestatement
pairsonagivensignals # S, whereSis thesetof all signals
usedin thedesign. Theexistenceof anMTE fault indicates
that theassociatedsignaldefinitionoccurs at the incorrect
timeandcausestheassociateduseto receiveincorrectdata.
Two typesof MTE faults can exist, MTEearly wherethe
definitionoccursearlierthanthecorrecttime,andMTE late

wherethedefinitionoccurslaterthanthecorrecttime.

Definition - An MTEearly (MTElate) fault is a tuple m �

empty <= 1;

FIFO description

Def −> DefUse

Late

error span

Def

Correct

Proc. Y description

(b)(a) (c)

time

Use −>
x := ReadFromFIFO();

if (empty != 1) then

Fig. 4. emptysignal is assertedlate, (a) a sectionof the FIFO description, (b) a section of the ProcessY description, (c) event trace with error span
highlighted.

$
ds % us& .

For example, Figure 4 shows an MTElate fault and
Figure5 showsanMTEearly fault.

B. Detectionof TimingFaults

The examples of Figures4 and 5 demonstratethat a
timing fault associatedwith a signal is detectedonly if

thereis auseof thesignalinsidetheerrorspanof thefault.
Theerrorspanextendsfrom theerroneoustime stepto the
correct time step. Unfortunately, the preciseposition of
the errorspanis not known sincesimulationof the faulty
circuit reveals only the erroneoustime step. It is clear,
however, that the error spanmust extend, either forward
or backward in time, from the erroneoustime step. In
order to ensurethat a useoccurrenceis within the error

datain <= x;Def ->

Proc. X description

buffer[i] <= datainUse ->

FIFO description

(c)

time

Def

error span

(b)(a)

Def

Correct

Use

Early

Fig. 5. datain signal is assertedearly, (a) a section of theProcessX description, (b) a section of theFIFO description, (c) event trace with errorspan
highlighted.

spanof a fault, the useoccurrencemust be closeto the
corresponding definition occurrence in time. Also, a use
occurrencemustexist both earlier thanthe definition and
later thanthedefinitionto detectboth lateandearlyMTE
faults. Thesecircumstancesexist in Figures4c and 5c
where, in eachcase,the use occurrenceis immediately
adjacent to the erroneoustime step. The detectionof
the MTElate fault is accomplishedby the usebefore the
erroneoustime step,andtheMTEearly fault is detectedby
theuseafter theerroneoustime step. We statethesefault
detectionrequirementsgivena testsequenceP asfollows.

Definition - An MTEearly fault, m ')(ds * us+ , is detected
if thereexists (ds * t1 +-, DOs. P * (us * t2 +-, UOs. P * suchthat
t2 / t1 0 δ.

Definition - An MTElate fault, m '1(ds * us + , is detected
if thereexists (ds * t1 +-, DOs. P * (us * t2 +-, UOs. P * suchthat
t1 / t2 0 δ.2 DOs. P is the set of definition occurrencesof signal s
during simulationwith a testsequenceP.2 UOs. P is the set of useoccurrencesof signal s during
simulationwith a testsequenceP.2 δ is the error span threshold, a non-negative integer
representingthemaximumtimebetweenthedefinitionand
useoccurrence.δ is alsotheminimum sizeof anerror span
which is guaranteedto bedetected.

IV. TIMING FAULT SIMULATION

We definefault simulationastheprocessof determining
the number of MTE faults detectedby simulating the
designwith a given testsequence. For thefault simulation
resultsshown herewe have usedthe SystemClanguage
[23] which is freely available and allows simulation by
compilation to a C++ executable. MTE fault simulation
is consistsof threesteps.
1 . du/ud pairs identification. Thedetection of MTE faults
requiresa useimmediately before andafter thedefinition.
The representation of the requirementon a dataflow in a
definition-usepair and a use-definition pair. So the first

step is to identify du/ud pairs. Not all du/ud pairs are
feasible. For example, if a definition occurs to generate
somecondition under which a usewill never occur, then
thisdupaircannever occur. An MTE faultwhichcannever
occuris calleda redundant fault.
2 . Simulation. The hardware descriptionis simulated
with test vectors. All definition anduseoccurrencesare
recordedduring thesimulationin theform of atimedtrace.
3 . MTE Fault Coverage Computation. The timed trace
is analyzed to identify all du/ud pairswhich areexecuted
within delta time units of eachother. If a du/ud pair
associatedwith anMTE fault is executedwithin delta time
unitsof eachother, thentheMTE fault is considered to be
detected.The ratio betweenthenumber of detectedMTE
faultsandthetotal number of MTE faultsis theMTE fault
coverage.

V. EXPERIMENTAL RESULTS

To evaluate the MTE fault model, we have used
SystemCas the hardware-software language, although
any language which supports discreteevent simulation
might have beenused. The designexamples usedare
taken from the SystemCweb site [23]. Table I provides
generalinformation on the examples used. Test vectors
are provided with the benchmarks. Table I includes
information on the number of lines of code, the total
number of du/ud pairs,thenumberof du/udpairsexecuted
duringsimulation,andtheMTE fault coverage. Thefault
coveragenumbersshown assumethatδ ' inf. Thenumber
of du/udpairsexecutedcountsonly thosepairswhich are
executedwithout anintervening definition(definition-clear
path).In theexample”stmach”,mostof thedu/udpairsare
redundant,sothetruemaximumcoverageshouldbehigher
than0.46. Thereasonfor redundantin ”stmach”example is
thatthedefinitionsandusesareenclosedwithin conditional
branches which are mutually exclusive. For example,
signal ”key” is definedwhen defining signal ”state” to
statea, andsomeuseof ”key” occurswhen”state” is not
in statea, so this du pair is a redundantdu pair becauseit
will neverhaveanopportunity to occur.

benchmark # of lines # of du/ud pairs du/ud pairs executed fault cov. without thr eshold
fir 187 18 16 0.89
bus 78 16 16 1

simplex 192 24 17 0.71
stmach 195 186 86 0.46

TABLE I

GENERAL INFORMATION OF BENCHMARKS.

The detailedtiming analysisof eachexample is listed
in separatetablesbecause the clock signal usedfor each
example is different,andthereforecauseslargedifferences
in timingrelationships.Toeliminatetheeffectof redundant
du/ud pairs on our evaluation, when computing fault
coveragein TablesII-V, we consideronly thedu/ud pairs
which areexecutedassumingthat δ 3 inf. The coverage
valuespresentedin TablesII-V arenormalizedusing the
maximumcoveragevaluesin TableI.

In our experiments,we required thateachdu/ud pair is
executedtwiceormorebecauseeachprocessexecutesonce
on initialization andmany du/ud pairsonly executeat that
time. The column labeled”X” is the number of du/ud
pairs which execute only once. The first row of tables
II-V are the minimum time distanceof du/ud pairs; the
secondrow is the number of du/ud pairsexecuted within
thecorresponding time distance.Row 3 is the MTE fault
coveragecorresponding to differenttime threshold.

0

5

10

15

20

0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 d

u/
ud

 p
ai

rs

4

time distance

time distance distribution of du/ud pairs

Fig. 6. Timedistancedistribution of stmachexample.

We notice that most of the executed du/ud pairs are
within asmallrangeof timedistance,referredasthecenter
region. Otherpairsarescatteredin a larger rangeof time
distance,referredas the scatterregion. In the “stmach”
example, the number of du/udpairsexecuted within time
distance0 and1 is morethana half of all executeddu/ud
pairs. Figure 6 shows the time distancedistribution of

example “stmach”.

VI . CONCLUSIONS

We define a Mis-Timed Event (MTE) fault model
which enablesefficient evaluation of test patterns for
detectingtiming-inducedfunctional errors. We provide
MTE fault coverageresultsfor severalSystemCexamples
to demonstratethe utility of the approach in identifying
potential timing faults in hardware systems. However,
more investigationis neededto identify infeasible du/ud
pairs,andto identify the minimum time distanceof each
du/udpair.

REFERENCES

[1] M. S.Abadir, J.Ferguson, andT. E. Kirkland. Logic
verificationvia test generation. IEEE Transactions
on Computer-Aided Design, 7(1):138–148, January
1988.

[2] B. Beizer. Software Testing Techniques, Second
Edition. VanNostrandReinhold,1990.

[3] S. Chakraborty and D. L.
Dill. Approximatealgorithms for time separationof
events. In International Conference on Computer-
AidedDesign, November1997.

[4] L. A. Clarke,A. Podgurski,D. J.Richardson,andS.J.
Zeil. A formal evaluation of dataflow pathselection
criteria. IEEE Trans.on Software Engineering, SE-
15(11):1318–1332,1989.

[5] A. Dasdan, D. Ramanathan, and R. K. Gupta.
Ratederivation andits applications to reactive, real-
time embedded systems. In Design Automation
Conference, pages263–268,1998.

[6] A. Dasdan,D. Ramanathan, and R. K. Gupta. A
timing-drivendesignandvalidationmethodology for
embedded real-time systems. ACM Transactions
on DesignAutomation andElectronic Systems, 3(4),
1998.

[7] S. Devadas, A. Ghosh, and
K. Keutzer. An observability-basedcodecoverage
metric for functional simulation. In International
Conferenceon Computer-AidedDesign, pages 418–
425,November1996.

time distance X 0 1 4 5 6 total
of du/ud pairs 1 6 6 1 1 1 16

norm. MTE fault cov. - 0.33 0.67 0.72 0.78 0.83 -

TABLE II

MTE FAULT COVERAGE ANALYSIS OF EXAMPLE ” FIR” .

time distance X 0 1 5 28 total
of du/ud pairs - 6 7 2 1 16

norm. MTE fault cov. - 0.33 0.72 0.83 0.89 -

TABLE III

MTE FAULT COVERAGE ANALYSIS OF EXAMPLE ” BUS” .

time distance X 0 5 15 20 total
of du/ud pairs 1 7 6 1 2 17

norm. MTE fault cov. - 0.29 0.54 0.58 0.67 -

TABLE IV

MTE FAULT COVERAGE ANALYSIS OF EXAMPLE ” SIMPLEX ” .

t. dis. X 0 1 2 3 4 5 9 11 12 13 16 19 20 28 39 tot.
pairs # 23 15 18 1 4 4 2 2 3 2 2 2 1 4 2 1 86
ft. cov. - .08 .18 .18 .20 .23 .24 .25 .26 .27 .28 .30 .30 .32 .33 .34 -

TABLE V

MTE FAULT COVERAGE ANALYSIS OF EXAMPLE ” STMACH” .

[8] F. Fallah,P. Ashar, andS.Devadas.SimulationVector
Generationfrom HDL Descriptionsfor Observability
Enhanced-StatementCoverage. In Proceedingsof the
36th DesignAutomation Conference, pages666–671,
June1999.

[9] F. Fallah, S. Devadas, and K. Keutzer. Functional
vector generation for hdl models using linear
programming and 3-satisfiability. In Design
Automation Conference, pages528–533,June1998.

[10] P. G. FranklandJ.E. Weyuker. An applicablefamily
of dataflow testingcriteria. IEEETrans.onSoftware
Engineering, SE-14(10):1483–1498, Oct.1988.

[11] R. Grinwald, E. Harel,M. Orgad,S. Ur, andA. Ziv.
Userdefinedcoverage- atoolsupportedmethodology
for design verification. In Design Automation
Conference, pages 158–163, June1998.

[12] A. Gupta,S.Malik, andP. Ashar. Towardformalizing
a validation methodology usingsimulationcoverage.
In DesignAutomation Conference, pages740–745,
June1997.

[13] G. Al Hayek and C. Robach. From specification
validation to hardware testing: A unified method.

In International Test Conference, pages885–893,
October1996.

[14] W. E. Howden. Weak mutation testing and
completenessof test sets. IEEE Transactionson
SoftwareEngineering, SE-8(4):371–379,July1982.

[15] S.-Y. Huang, K.-T. Cheng,K.-C. Chen,andJ.-Y. J.
Lu. Fault-simulation baseddesignerror diagnosis
for sequential circuits. In Design Automation
Conference, June1998.

[16] S. Kang and S. A. Szygenda. Design validation:
Comparing theoreticalandempiricalresultsof design
error modeling. IEEE Design& Testof Computers,
11(1):18–26, Spring1994.

[17] K. N. King and A. J. Offutt. A fortran language
systemfor mutation-basedsoftwaretesting.Software
PracticeandEngineering, 21(7):685–718,1991.

[18] J. Laski and B. Korel. A data flow oriented
program testingstrategy. IEEE Trans.on Software
Engineering, SE-9:33–43,1983.

[19] K. L. McMillan and D. L. Dill. Algorithms
for interface timing verification. In International
ConferenceonComputerDesign, 1992.

[20] S.C. Ntafos.A comparisonof somestructural testing
strategies.IEEETrans.onSoftwareEngineering, SE-
14:868–874,1988.

[21] A. J.Offutt, A. Lee,G. Rothermel, R. H. Untch,and
C. Zapf. An experimentaldeterminationof sufficient
mutant operators. ACM Transactions on Software
EngineeringMethodology, 5(2):99–118,April 1996.

[22] S Rapps and E. J. Weyuker. Selectingsoftware
test datausingdataflow information. IEEE Trans.
on Software Engineering, SE-11(4):367–375, April
1985.

[23] SystemCWebSite. http://www.systemc.org/.
[24] R. Vemuri and R. Kalyanaraman. Generation

of design verification tests from behavioral vhdl
programs using path enumeration and constraint
programming. IEEE Transactions on Very Large
Scale Intergration Systems, 3(2):201–214,1995.

[25] W. Wolf. Computers as Components Principles
of Embedded Computing SystemDesign. Morgan
KaufmanPublishers,2001.

[26] T.-Y. Yen, A. Ishii, A. Casavant, and W. Wolf.
Efficient algorithms for interfacetiming verification.
In EuropeanDesignAutomation Conference, 1994.

[27] Q. ZhangandI. G. Harris.A dataflow faultcoverage
metric for validation of behavioral hdl descriptions.
In International Conference on Computer-Aided
Design, November2000.

[28] Q. Zhang andI. G. Harris.A domaincoveragemetric
for thevalidation of behavioral vhdl descriptions. In
InternationalTestConference, October2000.

